\$ 3.4 Ergodicity.

Def. A measure preserving system (Mps) (X, B, M, T)

1's called ergodic if

Be β with $TB=B \Longrightarrow \mu(B)=0$ or 1. We simply say T is ergodic if (X, β, μ, T) is ergodic.

In another word, an ergodic MPS has no non-trivial invariant subset: any invariant subset equals either X or ϕ a.e. (subject to a set of zero measure).

For A, B = X, write $A \triangle B = (A \setminus B) \cup (B \setminus A)$

Thm 1 The following are equivalent:

- (i) T is ergodic.
- (ii) The only member $B \in \mathcal{G}$ with $\mu(T^{-1}B \triangle B) = 0$ are those with $\mu(B) = 0$ or $\mu(B) = 1$.

(iii) For any
$$A \in \mathcal{G}$$
 with $\mu(A) > 0$, we have
$$\mu(\bigcup_{n=1}^{\infty} T^n A) = 1.$$

(iv) For any A, B
$$\in$$
 B with $\mu(A) > 0$, $\mu(B) > 0$, there exists $n \in \mathbb{N}$ such that $\mu(T^hA \cap B) > 0$.

Pf. (i)
$$\Rightarrow$$
 (ii).
Let $B \in \beta$ with $\mu(B \triangle T^{\dagger}B) = 0$

We will construct Box & B with Box = T Box

Such that
$$\mu(B \triangle B_{\infty}) = 0.$$

Notice that for any n > 1,

$$T^{n}B \triangle B \subset \bigcup_{i=0}^{n-1} \left(T^{-i-i}B \triangle T^{i}B\right)$$

$$= \bigcup_{i=0}^{n-1} T^{-i} \left(T^{i}B \triangle B\right).$$

By the invariance of μ ,

$$\mu(T^{-h}B\Delta B)=0$$
.

Let
$$\beta_{\omega} = \bigcap_{i=1}^{\omega} \bigcup_{n=i}^{\omega} T^{i} B$$

Note that
$$T^{i}B_{io} = \bigcap_{i=1}^{\infty} \bigcup_{n=i+1}^{\infty} T^{i}B = B_{io}$$
.

Observe that
$$m/B \triangle (\bigcup_{i=1}^{\infty} T^{i}B) \leq \sum_{i=1}^{\infty} m(B \triangle T^{i}B)$$

$$m(B \triangle (\bigcup_{n=1}^{\infty} T^{i}B)) \leq \sum_{n=1}^{\infty} m(B \triangle T^{i}B)$$

Hence letting
$$i \rightarrow \infty$$
,

 $m(\beta \triangle \beta_{\infty}) = 0$.

(ii)
$$\Rightarrow$$
 (iii): Let $A \in \beta$ with $\mu(A) > 0$.

Set $C = \bigcup_{i=1}^{\infty} T^{-i}(A)$.

Then
$$T'C = \bigcup_{i=2}^{\infty} T^i(A) \subset C$$
.

However, since $\mu(T'C) = \mu(C)$, it follows that

However, since
$$\mu(T^{-1}C) = \mu(C)$$
, it follows the $\mu(T^{-1}C \triangle C) = \mu(C \setminus T^{-1}C) = 0$.

But
$$\mu(C) > \mu(T^{1}A) = \mu(A) > 0$$
, so $\mu(C) = 1$,

i.e.
$$\mu\left(\bigcup_{i=1}^{\infty} T^{i}A\right) = 1.$$

$$(iii) \Rightarrow (iv):$$

Then
$$\mu\left(\bigcup_{n=1}^{\infty}T^{-n}A\right)=1.$$

Hence
$$\mu\left(\begin{pmatrix} 0 & T^{-h}A \end{pmatrix} \cap B\right) = \mu(B) > 0$$

i.e.
$$\mu\left(\begin{array}{cc} U \\ V \\ A \end{array}, \left(\begin{array}{cc} T^{n} A & \cap B \end{array}\right)\right) > 0$$

Then
$$\exists B \text{ with } T^{\dagger}B=B$$
, but $0 < \mu(B) < 1$

Let $A = X \setminus B$.

Then $T^{-1}A = A$ and $\mu(A) > 0$.

Hence TANB = AnB = \$\phi\$.

H(TA nB) = o for all n > 1, leading

to a contradiction.

Thm 2. Let (X, B, H, T) be a MPS. Then the following are equivalent:

(i) T is ergodic.

(ii) When f is measurable, f(TX)= f(x) for all zeX

then f is constant a.e. (iii) When f is measurable, f(Tx) = f(x) a.e, then

P is constant are.

(iv) when fel'(m), f(Tx)= f(x) for all x ∈ X, then f is constant a.e.

(v) $f \in L^2(\mu)$, f(Tx) = f(x) are $\Rightarrow f(x)$ constant are

Pf. For brevity we only prove (i)
$$\Leftrightarrow$$
 (ii).

(ii) \Rightarrow (i). Let Be β with $T^{-1}B = B$.

Set $f = \chi_{\beta}$. By (ii), f is constant a.e.

 $\Rightarrow \mu(B) = 0 \text{ or } 1$.

(i) \Rightarrow (ii). Let f be measurable with $f \circ T = f$.

For any $n \ge 1$, $j \in \mathbb{Z}$, St.

 $A_{n,j} = \left\{ x : \frac{j}{n} \le f(x) < \frac{j+1}{n} \right\}$.

Then $T^{-1}A_{n,j} = A_{n,j}$ for all n, j .

Hence $\mu(A_{n,j}) = 0 \text{ or } 1$.

Since $\left\{ A_{n,j} \right\}_{j \in \mathbb{Z}}$ is a partition of χ ,

 $\exists j_n \in \mathbb{Z}$ such that $\mu(A_{n,jn}) = 1$.

Now take

 $B = \bigcap_{n=1}^{\infty} A_{n,jn}$.

Then $\mu(B) = 1$. But for all $x \in B$, $f(x) = \lim_{n \to \infty} \frac{j_n}{n}$.

Example 3. (Rotation on the circle).

Let $X = \mathbb{R}/2$, $\partial \in (0,1)$ and

 $Tx = x + d \pmod{1}$

Let 4 be the Haar measure on 1R/78.

Then T is ergodic (=> d is irrational.

Pf. First assume $d = \frac{P}{2} \in \mathbb{Q}$.

Define $f(x) = 9x \pmod{1}$. Then f(Tx) = f(x) for all x.

But f is not const are.

Hence T is not ergodic.

Next assume d is irrational.

Let fe L2(H) with foT = f.

Let fan Σ an θ be the fourier senses of f

 $f(Tx) \sim \sum_{n=-\infty}^{\infty} a_n e^{2\pi i n x} e^{2\pi i n d}$

Hence an = an e 2 mind for all ne Z.

It implies an=0 for all n =0.

Hence f is const. a.e.

Example 4. (Doubling map on the Circle)
$$X = \frac{1R}{2}, \quad Tx = 2x \pmod{1}, \quad \mu - \text{Hanr measure}$$

Than T is ergodic. . Similarly, one use Founier series.

Indeed, let
$$f \in L^2(\mu)$$
 with $f \circ T = f$.

Indeed, let
$$f \in L(\mu)$$
 with $f \circ I = f$.

$$f(x) = \sum_{n=-\infty}^{\infty} a_n e^{2\pi i n x}$$

$$f(x) = \sum_{n=-\infty}^{\infty} a_n e^{2\pi i n x}$$

which implies that
$$Q_n = 0$$
 if $n \neq 0$, and thus, f is const a.e.

Example 5. (Shift map).

Let $\Sigma^{IN} = \prod_{n=1}^{\infty} \{1, \dots, m\}$ be one-sided shift.

Let (Pi, ..., Pk) be a prob. Vector with Pi >0.

Define 4 on 2 by

$$\mu([x_1\cdots x_n]) = P_{x_1}\cdots P_{x_n}$$

Then m is 5-invariant. Moreover, m is ergodic.